/* PLSQL SYNTAXES*/

--

1.ABSTRACT DATATYPES:

 * CREATE TYPE STUDENT_ADDRESS_TYPE AS OBJECT (H.NO NUMBER(4),STREET VARCHAR2(20),

CITY VARCHAR2(20),STATE VARCHAR2(30),COUNTRY VARCHAR2(30))

 * CREATE TABLE STUDENT_DETAILS (ROLLNO NUMBER(10),NAME VARCHAR2(30),

COURSE VARCHAR2(30),ADDRESS STUDENT_ADDRESS_TYPE);

 * SELECT TYPECODE, ATTRIBUTES FROM USER_TYPES WHERE TYPE_NAME='STUDENT_ADDRESS_TYPE'-- TO COUNT NO OF ATTRIBUTES---

* SELECT COLUMN_NAME,DATA_TYPE FROM USER_TAB_COLUMNS WHERE TABLE_NAME='STUDENT_DETAILS';--- TO RETRIEVE DETAILS OF TABLE -----

 * SELECT ATTR_NAME,ATTR_TYPE_NAME,LENGTH FROM USER_TYPE_ATTRS WHERE TYPE_NAME='STUDENT_ADDRESS_TYPE'; -- RETRIEVE TYPE INFO----

 * INSERT INTO STUDENT_DETAILS VALUES(1,'VIVEK','APPS',STUDENT_ADDRESS_TYPE(12,'TARNAKA','SECUNDERABAD','AP','INDIA')); ---TO INSERT RECORDS---

2.PLSQL COLLECTIONS:

 A collection is a data structure that acts like an array.

 A collection is defined as an ordered group of elements, all of the same type.

 Individual element in a collection can be accessed by using index like an array in C.

 There are three types of collections in oracle :

 a. INDEX-BY TABLES OR ASSOCIATIVE ARRAYS,

 b. NESTED TABLES

 c. VARRAYS

 A:NESTED TABLES:

 A nested table is defined as table within another table.

 They can also be called one-column database tables.

 A nested table is collection of rows, represented as column within the table;

 nested table may contain many rows.

 Using nested tables we can store one-to-many relationships within one table.

 You can have multiple rows in the nested table for each row in the main table

 A nested table is like one-dimensional array but it has the following differences.

 Size of an array is fixed but nested table can grow to any size.

 The subscript of an Array is consecutive but subscript of a nested table may not be consecutive.

 SYNTAX:

* CREATE TYPE FEROZ_TYPE AS TABLE OF STUDENT_ADDRESS_TYPE;

 * CREATE TABLE EMP1(ENAME VARCHAR2(30),ADDRESS FEROZ_TYPE) NESTED TABLE ADDRESS STORE AS FEROZ_TYPE_TAB;

 * INSERT INTO EMP1 VALUES('VIVEK',FEROZ_TYPE(STUDENT_ADDRESS_TYPE(12,'AMEERPET','HYDERABAD','AP','INDIA'),

 STUDENT_ADDRESS_TYPE(13,'TARNAKA','SECINDERABAD','AP','INDIA')));

 *** To query a nested table Oracle provides a new function THE. To select data from a field in the nested table we must have to flatten the table first.

 Function THE is used for this purpose.

 ** SELECT S.CITY FROM THE(SELECT ADDRESS FROM EMP1 WHERE ENAME='VIVEK')S;

b: VARRAYS :

 Is short form for variable sized arrays.

They are used to store repeating attributes in a table.

 Varying arrays can be created based on standard datatypes of Oracle or by using abstract datatypes.

A varying array take fixed number of elements when it is created, which can be changed at runtime.

 The subscript used by Varrays is sequential.

We have to decide the maximum number of elements for the varying array.

 SYNTAX:

 Below given example explains creation and usage of VARRYS.

Let us consider an organization developing multiple projects simultaneously.

 Each project has few team members and these members report to a team leader.

We will have a varying array for storing members’ names.

Another table is created for storing the project details.

 * CREATE OR REPLACE TYPE FEROZ_VA AS VARRAY(10) OF VARCHAR2(20);

 * CREATE TABLE FEROZ_PROJECT(PROJNO NUMBER(4),PROJNAME VARCHAR2(50),TEAMLEAD VARCHAR2(20),TEAMMEMBER FEROZ_VA);

 * INSERT INTO FEROZ_PROJECT VALUES(1,'EMPLOYEES REPORT','VIVEK',FEROZ_VA('MANOHAR','FEROZ','RAJU'));

 c: INDEX-BY TABLES OR ASSOCIATIVE ARRAY:

 They are sets of key-value pairs.

The keys are maintained unique.

The key can be either an integer or a string.

The unique key is created using primary key from a table.

The types raw ,longraw , rowid ,CHAR are not allowed as keys.

 SYNTAX:

 DECLARE

TYPE EMP_TYPE IS TABLE OF EMP%ROWTYPE INDEX BY BINARY_INTEGER;

V EMP_TYPE;

BEGIN

SELECT * INTO V(7844) FROM EMP WHERE EMPNO=7844;

DBMS_OUTPUT.PUT_LINE('VALUES INSERTED');

END ;

3. DYNAMIC SQL:

 It is only possible to execute Data Manipulation Language (DML) statements (select, insert, update)

directly in PL/SQL.

This DML statements have to be fixed statements, that means the complete statement,

containing all the names of the database objects (columnnames, tablenames etc.), have to be known at runtime.

The reason for this is, that PL/SQL uses early (static) binding.

Binding is done at compile time. The definitions of the database objects

are looked up in the data dictionary at this time, not at runtime.

Without Dynamic SQL users would not be able to execute Data Definition Language (DDL)

statements (create, drop, grant, revoke), session control language (SCL) statements (alter session, set role)

or statements, where the whole statement or parts of the statement are unknown until runtime.

 METHODS:

 In PL/SQL 2.1 (Oracle Server Enterprise edition 7.1.X)

 Oracle introduced the DBMS_SQL package to execute dynamic SQL statements in PL/SQL.

It is a PL/SQL built-in, which offers a programmatic API and allows developers to include DDL

 and SCL stamements in there code.

In Oracle 8i Native Dynamic SQL (dynamic SQL for short)

has been introduced. Dynamic statements can be placed directly into PL/SQL code

using the EXECUTE IMMEDIATE statement.

 SYNTAX: FOR EXECUTE IMMEDAITE:

 EXECUTE IMMEDIATE dynamic_string

[INTO {define_variable[, define_variable]... | record}]

[USING [IN | OUT | IN OUT] bind_argument

[, [IN | OUT | IN OUT] bind_argument]...];

 EX:

 1.

 /* Execute a DDL (Data Definition) Statement: */

 BEGIN

 EXECUTE IMMEDIATE 'CREATE TABLE STUDENTS_RECORD(SLNO NUMBER(2),NAME VARCHAR2(20))';

 END;

 /* DROPPING TABLE*/

 EXECUTE IMMEDIATE 'DROP TABLE STUDENTS_RECORD';

--

 /*Insert a record using bind variables */

 DECLARE

 A NUMBER(4):=1;

 B VARCHAR2(20):='FEROZ';

 C VARCHAR2(20):='JAVA';

 STMT VARCHAR2(200);

 BEGIN

 STMT:='INSERT INTO STUDENTS VALUES(:1,:2,:3)';

 EXECUTE IMMEDIATE STMT USING A,B,C;

 END;

 /*Update a record using bind variable and return value */

 DECLARE

 A NUMBER(4):=1;

 B VARCHAR2(20):='FEROZ';

 C VARCHAR2(20):='JAVA';

STMT VARCHAR2(200);

BEGIN

 STMT:='UPDATE STUDENTS SET NAME='||'''VIVEK'''||' WHERE SLNO =:1 RETURNING NAME INTO :2';

EXECUTE IMMEDIATE STMT USING A RETURNING INTO B;

 DBMS_OUTPUT.PUT_LINE(B);

 END;

--

 /*Tablename not known until runtime */

 CREATE OR REPLACE PROCEDURE unknown_table (table_name IN VARCHAR2) AS

 stud_name VARCHAR2(40);

 sqlstring VARCHAR2(100);

 BEGIN

 sqlstring := 'SELECT name FROM '||table_name||' where SLNO = 1';

 EXECUTE IMMEDIATE sqlstring INTO stud_name;

 DBMS_OUTPUT.PUT_LINE(stud_name);

 END;

 4. CURSORS:

 A CURSOR IS A MEMORY AREA INTO WHICH WE CAN FETCH A SET OF RECORDS.

 A CURSOR MEMORY AREA WILL BE PROVIDED WITH A POINTER OR HANDLE USING WHICH

WE CAN READ EACH RECORD ONE AT A TIME.

USING CURSORS WE CAN PERFORM MULTIROW PROCCESSING WITHIN PL/SQL.

THE CURSOR MEMORY AREA IS A READ ONLY MEMORY AREA.

CURSORS ARE OF TWO TYPES

1. IMPLCIT CURSORS

2. EXPLICIT CURSORS

IMPLICIT CURSORS ARE CREATED IMPLICITLY BY ORACLE ITSELF WHENEVER ANY DML STATEMENT IS ISSUED.

AN IMPLICIT CURSOR WILL HAVE THE NAME SQL.

EXPLICIT CURSORS ARE CREATED BY THE PROGRAMMER WHEN WE REQUIRE TO PERFORM MULTI-ROW PROCCESSING.

 ATTRIBUTES:

A CURSOR ATTRIBUTE IS PROPERTY OF THE CURSOR.

USING THE CURSOR ATTRIBUTE'S WE CAN KNOW WHAT IS THE CURRENT STATUS OF THE CURSOR.

THE FOLLOWING ARE THE CURSOR ATTRIBS.

1. FOUND

2. NOTFOUND

3. ISOPEN

4. ROWCOUNT

FOUND:- THIS CURSOR ATTRIBUTE WILL RETURN A BOOLEAN VALUE, IT WILL RETURN TRUE IF A RECORD IS FOUND IN THE CURSOR MEMORY AREA AND IT WILL RETURN FALSE IF NO RECORD IS FOUND IN THE CURSOR MEMORY AREA.

NOTFOUND:- THIS CURSOR ATTRIBUTE WILL RETURN A BOOLEAN VALUE, IT WILL RETURN FALSE IF A RECORD IS FOUND IN THE CURSOR MEMORY AREA AND IT WILL RETURN TRUE IF NO RECORD IS FOUND IN THE CURSOR MEMORY AREA.

ISOPEN:- THIS ATTRIBUTE WILL TRUE IF THE CURSOR MEMORY AREA IS OPEN FOR READING AND FALSE IF THE CURSOR MEMORY AREA IS CLOSED FOR READING.

ROWCOUNT:- THIS CURSOR ATTRIBUTE RETURNS THE TOTAL NUMBER OF ROWS THAT HAVE BEEN READ FROM THE CURSOR.IT RETURNS THE NUMBER DATATYPE.

SYNTAX:-

<CURSOR NAME>%<ATTRIBUTE NAME>;

DECLARE

CURSOR <CURSOR NAME> IS <SELECT STATEMENT>;

FETCH :

SYNTAX:-FETCH <CURSOR NAME> INTO <VARIABLE LIST>;

 REF CURSORS:-

 AN EXPLICIT CURSOR IS A STATIC CURSOR I.E. THE CURSOR IS ASSOCIATED WITH ONE SQL STATEMENT AND THIS STATEMENT IS

 KNOWN WHEN THE BLOCK IS COMPILED.

 CURSOR VARIABLES CAN BE ASSIGNED TO DIFF. STATEMENTS AT RUNTIME. THEY ARE SIMILAR TO PL/SQL VARIABLES WHICH CAN

 HOLD DIFFERENT VALUES AT RUNTIME WHERE AS STATIC CURSORS ARE SIMILAR TO PL/SQL CONSTANTS AS THEY CAN BE

 BE ASSOCIATED WITH ONLY ONE RUNTIME QUERY.

 CURSOR VARIABLE IS A REFERENCE TYPE WHICH IS SIMILAR AS A POINTER.IN ORDER TO USE REFERENCE TYPE, THE VARIABLE HAS TO

 BE DECLARED AND THEN STORAGE HAS TO BE ALLOCATED.

 REF KEYWORD INDICATES THAT THE NEW TYPE WILL BE A POINTER TO THE DEFINED TYPE. THE TYPE OF THE CURSOR IS THEREFORE

 A REF CURSOR.

 SYNTAX:-

 TYPE <TYPE-NAME> IS REF CURSOR RETURN <RETURN-TYPE>

 WHERE TYPE_NAME IS NAME OF NEW REFERENCE TYPE AND RETURN_TYPE IS RECORD TYPE INDICATING THE

 TYPES OF SELECT LIST THAT WILL BE RETURNED BY THE CURSOR VARIABLE.

 EX:-

 DECLARE

TYPE DCURSOR IS REF CURSOR;

D1 DCURSOR;

VJOB EMP.JOB%TYPE;

VENAME EMP.ENAME%TYPE;

VDEPTNO EMP.DEPTNO%TYPE;

BEGIN

VNUM:='&VNUM';

IF VNUM=10 THEN

OPEN D1 FOR SELECT ENAME,JOB FROM EMP WHERE DEPTNO=10;

LOOP

FETCH D1 INTO VENAME,VJOB;

EXIT WHEN D1%NOTFOUND=TRUE;

DBMS_OUTPUT.PUT_LINE('JOB IS' ||VJOB);

DBMS_OUTPUT.PUT_LINE('ENAME IS' ||VENAME);

END LOOP;

CLOSE D1;

ELSIF VNUM=20 THEN

OPEN D1 FOR SELECT ENAME,JOB FROM EMP WHERE DEPTNO=20 ;

 LOOP

FETCH D1 INTO VENAME,VJOB;

 EXIT WHEN D1%NOTFOUND=TRUE;

DBMS_OUTPUT.PUT_LINE('JOB IS' ||VJOB);

DBMS_OUTPUT.PUT_LINE('ENAME IS' ||VENAME);

END LOOP;

CLOSE D1;

END IF;

END;

 5: RECORD TYPES:

 A PL/SQL RECORD IS SIMILAR TO A STRUCTURE IN 'C' LANGUAGE.

A PL/SQL RECORD WILL CONSIST OF MULTIPLE DATA TYPES AND WE CAN DECLARE A VARIABLE OF THIS USER DEFINED TYPE.

 THUS WE CAN STORE values OF MULTILPLE DATATYPES IN THE SINGLE VARIABLE.

SYNTAX:-

 DECLARE

TYPE <TYPE NAME> IS RECORD

(<TYPE MEMBER NAME> DATA TYPE,....,[...]);

BEGIN

.............

EX:-

 DECLARE

 TYPE EMPLOYEE IS RECORD (

 EMPNO NUMBER(4),

 ENAME VARCHAR2(10),

 JOB VARCHAR2(10),

 SAL NUMBER(7,2),

 DEPTNO NUMBER(2));

 VEMP EMPLOYEE;

BEGIN

 VEMP.EMPNO:=1001;

 VEMP.ENAME:='SMITH';

 VEMP.JOB:='SALESMAN';

 VEMP.SAL:=5000;

 VEMP.DEPTNO:=10;

 DBMS_OUTPUT.PUT_LINE(VEMP.EMPNO||' '||VEMP.ENAME);

END;

--

6. FORALL KEYWORD:

 The keyword FORALL instructs the PL/SQL engine to bulk-bind input collections

before sending them to the SQL engine. Although the FORALL statement contains

an iteration scheme, it is not a FOR loop.

 Its syntax follows:

FORALL index IN lower_bound.. upper_bound

sql_statement;

DECLARE

TYPE X IS VARRAY(4) OF NUMBER(4);

DEPT X:=X(10,20,30,40);

BEGIN

FORALL J IN 1..4

UPDATE EMP SET SAL=SAL+100 WHERE DEPTNO=DEPT(J);

END;

--

7. BULK BINDING:

A new feature called "bulk binds" was added to PL/SQL block in Oracle 8i.

Bulk binds enable a PL/SQL program to fetch many rows from a cursor in one call

instead of fetching one row at a time.

Bulk binds also allow many similar DML statements to be executed with one call

 instead of requiring a separate call for each.

For certain types of PL/SQL programs,using bulk binds will reduce CPU usage

 and make the code run faster.

A context switch occurs every time the PL/SQL engine calls the

 SQL engine to parse, execute, or fetch from a cursor. Since context switches use CPU time,

reducing the number of context switches will reduce the amount of CPU time used. In addition,

 the SQL engine can often reduce the number of logical reads required when multiple rows

 are fetched in one call. Reducing logical reads also saves CPU time.

DECLARE

 TYPE T1 IS TABLE OF EMP.EMPNO%TYPE;

 T22 T1;

 CURSOR C1 IS SELECT EMPNO FROM EMP;

 BEGIN

 OPEN C1;

 FETCH C1 BULK COLLECT INTO T22;

 FOR K IN T22.FIRST...T22.LAST LOOP

 DBMS_OUTPUT.PUT_LINE(T22(K));

 END LOOP;

 CLOSE C1;

 END;

ORDINARY

DECLARE

T1 SCOTT.EMP.EMPNO%TYPE; ---T22 T1

CURSOR C1 IS SELECT EMPNO FROM SCOTT.EMP;

BEGIN

OPEN C1;

LOOP

FETCH C1 INTO T1; ---FETCH C1 BULKCOLLECT INTO T22

EXIT WHEN C1%NOTFOUND

DBMS_OUTPUT.PUT_LINE(T1);

END LOOP;

CLOSE C1;

END;

8. DIFFERENCES BETWEEN FUNCTIONS AND PROCEDURES:-

1. A function can have return statement where as a procedure cannot have a return statement.

2. A procedure can be executed separately from SQL and also can be invoked from some other procedures or functions where as a function can only be invoked from a function or a procedure.

3. A function can be used in DML where as a procedure cannot be invoked from a DML.

4. We cannot use DDL in a function where as in procedure it is possible using dynamic SQL package.

5. A procedure can be either stored procedure or an anonymous where as a function cannot be anonymous.

6. We cannot use a Transaction control language in a function where as in Procedures we can use TCL.

7. Functions can also have IN and OUT parameters.

8. Functions are used for computations where as procedures can be used for performing business logic.

9. TRIGGERS:

 A database triggers is stored PL/SQL program unit associated

 with a specific database table or view. The code in the trigger defines the action the database needs

 to perform whenever some database manipulation (INSERT, UPDATE, DELETE) takes place.

A database trigger has three parts :

1.
A triggering event

2.
A trigger constraint (Optional)

3.
Trigger action

Types of Triggers:

The following are the different types of triggers.

1.Row triggers and

2.statement triggers

A Row trigger fires once for each row affected. It uses FOR EACH ROW clause.

 They are useful if trigger action depends on number of rows affected.

Statement Trigger fires once, irrespective of number of rows affected in the table.

 Statement triggers are useful when triggers action does not depend on Before and afterTriggers

While defining the trigger we can specify whether to perform the trigger action (i.e. execute trigger body)

 before or after the triggering statement.

 BEFORE and AFTER triggers fired by DML statements can only be defined on tables.

BEFORE triggers The trigger action here is run before the trigger statement.

AFTER triggers The trigger action here is run after the trigger statement.

INSTEAD of Triggers provide a way of modifying views that can not be modified directly using DML statements.

LOGON triggers fires after successful logon by the user and LOGOFF trigger fires at the start of user logoff.

SYNTAX:

CREATE OR REPLACE TRIGGER <TRIGGER-NAME> BEFORE|AFTER

DELETE|INSERT|UPDATE OF <COLUMN> ON <TABLE-NAME>

REFERENCING OLD[AS]OLD>|NEW[AS]<NEW>

FOR EACH ROW[WHEN <CONDITION>]

BEGIN

STATEMENTS....

END.

Handling multiple situation:

A trigger can be used to handle multiple situations using conditional predicates UPDATING, INSERTING, or DELETING

we can handle each situation.

CORRELATION NAMES:

While using row triggers, the trigger action statement can access

 column values of the row that is being processed currently. This is done using correlation names.

 There exist two correlation names for every column of the table,

 one for the column old value and the other for its new value.

 We use qualifier NEW with column name for new values and qualifier OLD is used to refer old value

of the column.Example: IF :new.sal < :old.sal THEN …… The REFERENCING option is used to avoid name

conflicts between correlation names and table names. For example if you are using a table by name new

or old with field names say SNO, NAME (though it is a very rare situation) then the ambiguity arises.

 To avoid this we use REFERENCING option.

SYNTAX:

 CREATE OR REPLACE TRIGGER <TRIGGER-NAME> BEFORE INSERT ON NEW

 REFERENCING NEW AS NEWVAL

 FOR EACH ROW

 BEGIN

 STM...

 END;

Mutating Table:

is a table that is presently under modification by INSERT, UPDATE, or DELETE statement,

or a table that has referential integrity constraint with DELETE CASCADE OPTION.

 Constraining Table:

 is a table, which is to be read by triggering statement either directly or indirectly.

10. EXCEPTIONS:-

 An Exception is an error situation,

which arises during program execution. When an error occurs exception is raised,

normal execution is stopped and control transfers to exception-handling part.

 Exception handlers are routines written to handle the exception.

The exceptions can be internally defined (system-defined or pre-defined) or User-defined exception.

NOTE:-

·
An Exception cannot be declared twice in the same block. ·

Exceptions declared in a block are considered as local to that block and global to its sub-blocks. ·

An enclosing block cannot access Exceptions declared in its sub-block.

 Where as it possible for a sub-block to refer its enclosing Exceptions.

--

11.

 PACKAGES:-

 A package is a group of procedures, functions, variables and SQL statements created as a single unit.

 It is used to store together related objects. A package has two parts, Package Specification or spec or package header and Package Body.

 Package Specification acts as an interface to the package.

Declaration of types, variables, constants, exceptions, cursors and subprograms is done in Package specifications.

Package specification does not contain any code. Package body is used to provide implementation for the subprograms,

queries for the cursors declared in the package specification or spec.

Advantages: ·

It allows you to group together related items, types and subprograms as a PL/SQL module. ·

When a procedure in a package is called entire package is loaded,

 though it happens to be expensive first time the response is faster for subsequent calls.

·
Package allows us to create types, variable and subprograms that are private or public

 SYNTAX:

 CREATE OR REPLACE PACKAGE <PACKAGE-NAME>

 IS

 [DECLARATIONS OF TYPES AND VARIABLES]

 [SPECIFICATIONS OF CURSORS]

 [SPECIFICATIONS OF MODULES]

 END <PACKAGE-NAME>

 CREATE OR REPLACE PACKAGE BODY IS

 [DECLARATIONS OF VARIABLES AND TYPES]

 SPECIFICATIONS AND SELECT STATEMENT OF CURSORS]

 SPECIFICATIONS OF MODULES]

 BEGIN

 [EXECUTABLE STATEMENTS]

 [EXCEPTIONS

 EXCEPTION HANDLING]

 END <PACKAGE-NAME>

12. PRAGMAS:-

 THEY ARE COMPILER DIRECTIVES WHICH SERVE AS INSTRUCTIONS TO PLSQL COMPILER.

 THE COMPILER WILL ACT ON PRAGMA DURING THE COMPILATION OF THE BLOCK.

 TYPES OF PRAGMAS:

 1.PRAGMA AUTONOMOUS_TRANSACTION

 2.SERIALLY REUSABLE

 3.EXCEPTION INIT

 4.RESTRICT_REFERENCES

 5.INTERFACE

 PRAGMA AUTONOMOUS TRANSACTION:

 IT IS A TRANSACTION THAT IS STARTED WITHIN THE CONTEXT OF ANOTHER TRANSACTION KNOWN AS THE PARENT TRANSACTION BUT

 IT IS INDEPENDENT OF IT.AUTONOMOUS TRANSACTION CAN BE COMMITTED OR ROLLBACK INDEPENDENT OF THE STATE OF THE PARENT

 TRANSACTION.

 NOTE:

 The AUTONOMOUS_TRANSACTION pragma instructs the PL/SQL compiler

to mark a routine as autonomous (independent).

An autonomous transaction is an independent transaction started

by another transaction, the main transaction. Autonomous transactions

let you suspend the main transaction, do SQL operations,

commit or roll back those operations, then resume the main transaction.

 SYNTAX:-

DECLARE

CNT1 NUMBER;

BEGIN

INSERT INTO MSG VALUES(2);

SELECT COUNT(*) INTO CNT1 FROM MSG;

DBMS_OUTPUT.PUT_LINE('FROM MAIN PROCEDURE'||CNT1);

P_PRO;

SELECT COUNT(*) INTO CNT1 FROM MSG;

DBMS_OUTPUT.PUT_LINE('FINAL TOTAL'||CNT1);

COMMIT;

END;

/

 CREATE OR REPLACE PROCEDURE P_PRO AS

 PRAGMA AUTONOMOUS_TRANSACTION;

 CNT NUMBER;

 BEGIN

 INSERT INTO MSG VALUES(1);

 COMMIT;

 SELECT COUNT(*) INTO CNT FROM MSG;

 DBMS_OUTPUT.PUT_LINE('THE COUNT FROM THE PROCEDURE'||CNT);

 END;

 2. RESTRICT_REFERENCES:

 THEY PLACES RESTRICTIONS ON WHAT KINDS OF SQL STATEMENTS AND PACKAGES VARIABLES CAN BE IN A FUNCTION.IN ADDITION

TO COMPILING THE FUNCTION AS NORMAL,THE COMPILER NEEDS TO VERIFY THAT THE RESTRICTIONS ARE MET.

THIS PRAGMA SPECIFIES THE PURITY LEVEL OF A GIVEN FUNCTION ;

 SYNTAX:

 PRAGMA RESTRICT_REFERNCES(SUBPROGRAM_OR_PACKAGE_NAME,WNDS|RNDS|WNPS|RNPS);

--

3. EXCEPTION INIT:-

 WITH THE HELP OF THIS U CAN ASSOCIATE A NAMED EXCEPTION WITH A PARTICULAR ORACLE ERROR. BY THIS U CAN TRAP THE

 ERROR SPECIFICALLY RATHER THAN USING THE WHEN OTHERS HANDLER.

 SYNTAX:

 PRAGMA EXCEPTION_INIT(EXCEPTION_NAME,ORACLE_ERROR_NUMBER);

 4. serially reusable:-

 CREATE OR REPLACE PACKAGE VIV_PACK IS

X NUMBER;

PRAGMA SERIALLY_REUSABLE;

PROCEDURE VIV1 (VAL NUMBER);

PROCEDURE VIV2;

END VIV_PACK;

CREATE OR REPLACE PACKAGE BODY VIV_PACK IS

PRAGMA SERIALLY_REUSABLE;

PROCEDURE VIV1(VAL NUMBER) IS

BEGIN

X:=VAL;

END VIV1;

PROCEDURE VIV2 IS

BEGIN

IF X IS NOT NULL THEN

DBMS_OUTPUT.PUT_LINE('VALUE OF X IS'||X);

ELSE

DBMS_OUTPUT.PUT_LINE('X IS NULL');

END IF;

END VIV2;

END VIV_PACK;

--

 MUTATING TABLE:-

 IT IS A TABLE THAT IS CURRENTLY BEING MODIFIED BY INSERT OR UPDATE OR DELETE OR A TABLE THAT MIGHT

 NEED TO BE UPDATED BY THE EFFECTS OF A DECLARATIVE DELETE CASCADE REFERENTIAL INTEGRITY CONSTRAINT.

--

 PL/SQL TABLES AND RECORDS:-

 PL/SQL TABLES ARE TEMPORARY ARRAY-LIKE OBJECTS USED IN A PL/SQL BLOCK.

 THEY CAN HAVE ONE COLUMN AND A PRIMARY KEY.

 COLUMN DATATYPE CAN BELONG TO ANY SCALAR DATATYPE, BUT THE PRIMARY KEY MUST ONLY BELONG TO

 THE TYPE BINARY_INTEGER.

 SYNATX;-

 DECLARE

 STEP:1 TYPE <TYPE-NAME> IS TABLE OF <COL-DEF> INDEX BY BINARY_INTEGER;

 STEP:2 <PL/SQL_TABLENAME> <TYPENAME>;

 RECORDS:-

 IN THIS WE CAN SPECIFY THE DATATYPE OF THE COLUMN AND CAN ALSO DEFINE OUR OWN COLUMNS IN THE RECORD.

 TYPE <TYPE_NAME> IS RECORD (COLUMN DEFINITIONS....);
